设为首页 收藏本站 English

当前位置: 裕能五金网 >> 手动工具

数控铣削过程有约束广义预测控制泉州

发布时间:2022-07-29 00:24:22

数控铣削过程有约束广义预测控制

数控铣削过程有约束广义预测控制 2011年12月09日 来源: 0 前言 通过在线调节进给速率实现切削过程的自适应恒力控制是大幅度提高数控铣床生产率的有效途径,也是众多学者多年来一直潜心研究的课题。然而,在前人所提出的各类自适应恒力控制算法[1~6]中,控制器的参数整定通常仅依赖于被控系统过去和当前的动力学行为,而未考虑控制输入和系统输出前景的影响,且未对控制器施加合理的约束条件。因此,当因切深或切宽突变而诱发铣削力突变时,通常会导致被控系统输出超调或控制输入过大。 为克服上述问题,本文针对数控铣削过程的特点,研究构造有约束广义预测控制律的方法,并据此提出一种控制器参数整定解析算法。仿真和试验结果表明,该方法具有工程实用性强,鲁棒性好及可满足实时控制要求的优点。 1 无约束广义预测控制律设计 如图1所示的数控铣削过程恒力控制系统由控制器和铣削过程组成。其中,伺服进给与铣削加工两部分串接构成铣削过程。图中vf为进给速度,F为实际铣削力,Fr为参考铣削力。              图1 数控铣削恒力控制系统 综合考虑伺服系统动态特性和刀具变形等因素,瞬态铣削过程可简化为一二阶线性系统[9]A(z-1)f(t)=B(z-1)vf(t-1)         式中 A,B——向后传递算子z-1的多项式,且A(z-1)=1+a1z-1+a2z-2   B(z-1)=b0+b1z-1系数a1、a2、b0和b1可用递推最小二乘法估计。 2 约束条件 工程实践表明,数控铣削过程恒力控制需考虑如下约束:进给速度应在机床设计范围内且保证铣削力小于机床—刀具—工件系统的极限允荷。进给速度增量应小于各坐标的加减速极限,且在刀具空切时应限制增量上限以免切入时因铣削力过大造成刀具破损。当实际铣削力大于设定值时,应尽快降低进给速度。应有效地控制铣削力超调以避免刀具变形对表面质量的影响。综上所述,数控铣削过程的恒力控制需对进给速度及其增量、实际铣削力上升时间和超调施加约束。 3 有约束广义预测控制律设计 解析算法 由式知,性能指标函数一般为优化空间(ΔvT,J)∈RNv+1中的超曲面。注意到控制前景为Nv=2,故求解QP问题可在三维空间中进行。此时因Δv的分量为Δvf(t)和Δvf(t+1),故由式(14)知第i个约束条件可表示为d1iΔv(t)+d2iΔv(t+1)≤ci            在实际控制问题中,因Δvf(t)和Δvf(t+1)仅在由二者张成平面的第Ⅰ象限(F(t)<Fr)和第Ⅲ象限(F(t)>Fr),故可定义如下两类约束条件:定义:若约束条件与坐标轴构成闭域或与坐标轴构成一带状区域,则称为第一类约束条件;否则称为第二类约束条件。   设两类约束条件数分别为k′和k-k′,则由上述定义和图2知,无约束极小值点的位置存在三种情况:①极小值点在可行域内,无约束解即为有约束解。②不满足第一类约束条件pi(i=1,…,k′)。③不满足第二类约束条件p′j(j=k′+1,…,k)。据此,可构造有约束广义预测控制律解析解法。图2 无约束极小值点的位置 若性能指标函数的无约束极小值点在可行域之外,注意到平面Γ通过无约束极小值点(线)并与可行域相交,且平面Γ与性能指标函数J的交线JΓ在极小点任一侧是单调上升的,故有约束极小点必为Γ与可行域边界的交点。据此,可经求交运算和比较交点坐标获得约束条件边界,然后在约束边界上用解析法求得进给速度的解析解答。 计算机仿真表明,与无约束控制策略相比,闭环系统的性能可得到显著改善,且算法可满足实时控制要求[9]。 4 切削试验 切削试验设备为Cincinatti H1000卧式加工中心,控制器为DSPmaster-C50信号处理板。试验过程中,安装在主轴末端的光电编码器提供每转1024脉冲作为DSP板的外部时钟以保持采样周期与主轴转速同步。由KISTLER测力仪拾取的切削力信号经电荷放大滤波后由DSP板按有效值合成,并按前述算法计算控制指令。控制指令经光隔功放输入给数控系统内置PLC,并通过改写进给倍率寄存器实时调节进给速度(见图3)。此种接口方案的优点是仅需变更PLC程序

同仁坤宝丸治疗效果怎么样

女性肝肾阴虚怎么调理

同仁堂锁阳固精丸几盒一疗程

温肾固精有哪些药物

女人更年期失眠吃什么

友情链接